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Viscous properties of binary mixtures of nematic liquid crystals
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Viscous properties of binary mixtures of nematic liquid crystals have been investigated on the
basis of the mean field potential approximation. Rotational diffusion coefficients of components are
discussed. The Leslie viscosity coefficients for binary mixture have been calculated using the Doi
approach.

PACS number(s): 61.30.—v, 66.20.+d, 64.75.+g

I. INTRODUCTION

Viscosity coefficients, due to their importance in the
design of liquid-crystal materials, are the subject of inten-
sive studies. In particular, in electro-optic applications,
the rotational viscosity coefficient «; is a very important
quantity, because the response time of liquid-crystal de-
vices is proportional to its value. Hence materials with
prescribed parameters are needed in many technical ap-
plications. On the other hand, it is often hard to find
chemically pure nematic substances possessing desired
features. Thus, one has to employ mixtures of nematic
materials.

Existing theories, describing the viscous properties of
pure nematic liquid crystals seem to be satisfactory. Un-
fortunately, an analogous theory concerning mixtures is
still missing. It is obvious that such a theory, which
would allow us to predict properties of mixtures, would
be very useful in technical applications.

Reference [1] presents the microscopic theory of binary
mixtures of uniaxial nematic liquid crystals. Authors,
starting from the Bogoliubov-Born-Green-Kirkwood-
Yvon hierarchy equations, have obtained systems of self-
consistent equations for the equilibrium one-particle dis-
tribution functions. The appropriate free-energy func-
tional and stability conditions are also discussed in de-
tail.

In this paper we investigate the viscous properties of
J

of

ot kT

binary mixtures in the framework of the microscopic the-
ory presented in [1]. We make an attempt at expressing
the viscosity coefficients in terms of molecular parame-
ters characterizing pure components. We adopt the Doi
[2] method for a system consisting of two kinds of nematic
molecules. We obtain a microscopic stress tensor for mix-
tures in the mean-field approximation. Next, comparing
it with appropriate phenomenological Ericsen-Leslie for-
mulas, we derive microscopic expressions for the six Leslie
viscosity coefficients.

II. THE KINETIC EQUATION FOR
BINARY MIXTURES

We consider a spatially homogeneous system composed
of two kinds of uniaxial molecules, A and B, under the
influence of a low velocity gradient field. The probability
that at time ¢ the long axes of two arbitrary molecules
of types A and B point to the direction of uy and up,
respectively, is described by the orientational distribu-
tion function f(ua,up;t). We assume that the motion
of a selected molecule in a solution can be treated as a
rotational Brownian motion in a certain external mean
potential, which is different for molecules of type A and
B. The standard method used for one-component sys-
tems was described in Refs. [3,4]. For the two-component
system we propose the following Fokker-Planck equation
governing the time evolution of f(uy4,upg;t):

f
T

— =DaR4 (RAf - i'RAVA[f]) + DpRpB (RBf - k—RBVB[f])

—Rawaf —Rpwsf+2DsRaRBS , (1)

where Ra
and Rp are the differential operators ugy x 8/8uy and
up x 8/8up, respectively. The first two terms on the
right side of the above equation represent the Brown-
ian motion in the presence of the mean potentials V4
and VB, respectively. Here D4 and Dp are the effective
rotational diffusion coefficients in the solution of parti-
cles A and B. The next two terms represent the effect of
the velocity gradient, which rotates each molecule with
a certain average angular velocity w. For an ellipsoidal
molecule with the long axis parallel to the unit vector u,
characterized by the length to width ratio p, it has the
form [5]
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ux (A-u)—ux(f2-u), (2)

where A and € are the symmetric and antisymmetric
parts of the flow velocity gradient:

Aaﬂ = %(aa'vﬂ + aﬁva), Quﬁ = %(aavﬁ - ag'Ua) . (3)

Naturally, because of the different p ratio, the average
angle velocities of A- and B-type molecules are different.
Finally, the last term in (1) is due to the correlation in
chaotic motion of two kinds of molecules. In general case
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there is no reason to omit it. In this paper, however,
we assume that in the equilibrium (in absence of veloc-
ity gradient) the orientational distribution function fo is
a product of two one-particle orientational distribution
functions

fo(ua,up) = fi'(n-ua)f3 (n - us), (4)
where n is an arbitrary unit vector. Under this assump-
tion the cross-diffusion coefficient Dag (Dap = Dpa) is
defined as p p

Dap = 3, (1a(0) -up(t)) = 5 (ua(0)) - (un(?)),

where () denotes the equilibrium average and vanishes
for the steady-state solution.

In the kinetic equation (1), two phenomenological con-
stants D4 and Dp appear whose values are not deter-
mined within the framework of our theory. Moreover,
both these diffusion coefficients are nontrivial functions
depending on the temperature and the concentration
of the two components A and B. In the case of one-
component nematic liquid crystals the diffusion constant
can be successfully incorporated into theory from exper-
iment [6]. Unfortunately, for mixtures this problem is
much more complicated. The point is that there are
no analogous experimental data that would allow us to
establish two rotational diffusion constants in mixtures
independently. Hence, we have to calculate both coefhi-
cients on the basis of existing experimental data, where
the properties of pure nematic materials are taken into
account.

In the next section we show the method that allows us
to calculate the temperature dependence of both rota-
tional diffusion coefficients for arbitrary molar fractions
of components.

III. THE ROTATIONAL DIFFUSION
COEFFICIENTS OF COMPONENTS
OF A BINARY MIXTURE

According to the fluctuation-dissipation theorem the
rotational friction coefficient &, related to the rotational
diffusion coefficient D by Einstein’s formula, D = kT/¢,
is given by the following average:

¢=gir [ TOr@) @ (1) =0 (5)

where I'(t) is the total torque exerted on the selected
molecule at time ¢t by the surrounding molecules and ()
denotes the equilibrium average. We can assume that
the time correlation function, (I'(0)I'(¢)), which appears
in Eq. (5), decays exponentially with very short relax-
ation time 7. This is a direct consequence of the Fokker-
Planck approximation, which is assumed to be valid for
the considered system. We have

Aw<r(0)r(t))dt ~ (T%(0)) /Ooo e—t/Tdt
=T <F2(0)> . (6)

The estimation of 7 is given by the formula

= AG\/g, )

where I is the transverse moment of inertia of a molecule

and AO is the free angular volume fraction per molecule.
For estimation of A® we use the following expression
[4,8,9]:

AO® = (a—2vr)/L, (8)

where 7 and L are the radius and the length of a molecule,
v is a certain numerical factor, and a is a functional de-
pending, in the general case, on the one-particle orienta-
tional distribution function, number of molecules in unit
volume, and length L. Although estimation (8) has been
calculated for one-component systems, we expect that its
validity can be successfully extended for binary mixtures.
Such a generalization seems to be especially reasonable
when a mixture of two similar kinds of molecules is under
consideration.

One can check that by applying relation (5) for a two-
component system we obtain:

‘
éa= o [GTha+ BTh s+ 2adsThs] . ()

g
€ = Z’;I;Bi“_ [dZBIg,B + dﬁff,,a + 2dBdAIg,A] )

where d4 and dp are the number densities of com-

ponents A and B, respectively, 74 = AOa+/I4/kT,

78 = AO®p+/Ig/kT, and integrals I}fj are defined as

follows:

I, = /81VA’I(1,2)61VA’J(1,3)

x f317(1,2,3)d(1)d(2)d(3), (10)
If; = /alvB”(1,2)alvaJ(1,3)

x 217 (1,2,3)d(1)d(2)d(3).

Here 8, denotes the spheric derivative, ny x /8n,, and
VAT and VB! are the interaction potentials between an
appropriate pair of molecules. 3K’I’J(1, 2,3) is the three-
particle distribution function describing the probability
that the position of molecules of K, I, and J type is given
by (1), (2), and (3), respectively [we use the abbreviation
@) = (rs,mi)]-

Formulas (7)—(10) allow us to express both constants
D 4 and Dp in terms of quantities characterizing the pure
components. For further calculation, however, knowledge
of the explicit form of all interaction potentials V44,
VB:B and VAPB is needed. Therefore, the problem of
the rotational diffusion coefficients will be not discussed
in detail in this paper.

IV. THE STRESS TENSOR

In general, the theory of dissipative systems is deter-
mined by the viscous stress tensor . The hydrodynam-
ics of nematic liquid crystals in the absence of external
fields is given by two constitutive equations proposed by
Ericsen and Leslie:

Oap = 01NaNgNuNeA e + 0gAap + asnanyAup

+a6nﬁnuA,m + asnaNg + azngNa, (11)
0=nx (h—7N-1A n), (12)
where
d A~
N=_E+Q.n,71=a3—a2,’yz=ae—as- (13)

dt
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A and € are defined in (3) and the constants oy, ...,as In order to obtain the desired expression for the mi-
are called Leslie coefficients. Here, h denotes the molec- croscopic stress tensor we follow the standard procedure
ular field, which is in an equilibrium state parallel to the [4] and analyze the change in the free energy caused by
director n. It is obvious that the above phenomenolog- the small velocity gradient field. The stress tensor e.g

ical equations are valid as well in the theory of mixture fulfills the following relation:
of nematic liquid crystal molecules as long as only one

common director field n(r) is present. In this section we OF = oageap + O(&?), (14)
make use of the first Ericsen-Leslie equation, and derive

the symmetric part of the viscous stress tensor in terms where € denotes a hypothetical small deformation tensor.
of molecular parameters. In the next section, using the The free energy F per unit volume of the binary system
second one, we obtain the antisymmetric part. is expressed as [1]

|

F = dskT / fA(u) In[f4(u)]d*u + dkT / B (u) In[fB(u)]d*u
—%di/KAA(ul,uz)fA(ul)fA(uz)dzuldzuz - %dZB/KBB(ul,llz)fB(ul)fB(U2)d2uleU2
—ddp / KAB (uy, u) £ (uy) £8 () d?uy dPus, (15)

where f4(u) and fB (u) are the one-particle orientational distribution functions normalized to unity, and d4 and dg
denote number densities of particles A and B, respectively. In general, integral kernels K44, KBB and K48, related
to the interaction energy between appropriate pairs of molecules, are quite general functions of two vectors, u; and
uy. Their generality is limited by interaction symmetry. We do not restrict ourselves to potentials, which depend
only on the inner product u; - uz. The change §F in the free energy due to the small variations § f and 6 fB has the
form

5F = dakT / 5FA(w)d?u + d kT / 54(w)n(f24) (u)d2u
+dgkT / 515 (w)d?u + dgkT / 575 (w)ln[fB (u)]d?u — da / (VAALFA ] + VAB(fB u)) 6£4(w)dPu

~ds / (VEB(fg u] + VEA[f, u]) 657 (u)d*, (16)
where
VA4 o, u] = dA/KAA(ul,u)cp(ul)dzul,

VAB[p u] = dg / KA (uy, u)p(uy)d?uy,
VBB u] = dp / KB (uy, u)p(u;)d?uy,

VBAp, u] = dA/KAB(ul,u)go(ul)dzul,

Hereafter we will omit in notation the dependence of the above functionals on the director u.

In the velocity gradient field each molecule rotates with the average angular velocity w given by (2) and in the
infinitesimal time 6t it changes its orientation by a small angle 6@,
2z _ ¢ty
50 — gux PE=¢&)-u (17)

PP+l
where €43 = O3v, 6t can be treated as a hypothetical small deformation tensor. Therefore we can express both
variations & f4 and 6 &, which are assumed to be linear in ¢, as

§f4 = —0@ 4RSS, fP = —8@pRpfL. (18)

Substituting (17) and (18) into (16) and using a similar technique as in [2,7] we obtain the following expressions
for symmetric and antisymmetric parts of the microscopic stress tensor:

~sym 1. d
<Un¥icr> = 3deAf(pA) (uAuA — 51) -+ 7A (uA(uA X RAVOA) + (uA X RAVOA)UA) (19)
1. d
+3deBf(pB) (uBuB — 51) + TB [uB(uB X RBVOB) + (uB X RBVOB)UB] s
Aasym d d
(o) = = [ma(ua x RaVs") - (ua x RaVit)ua] + ~ [us(up x ReV®) - (up x ReVP)us], (20)
where
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and

f(p) =

p’-1
P +1

(22)

In order to derive the first phenomenological Ericsen-Leslie equation for the symmetric part of the stress tensor we
adopt the method introduced by Kuzuu and Doi [2]. As a result we obtain

2
kT

da.SA dpSEB
+2 (f(PA) 5+ flee)

35 \ D4y

da

d . -
+2 A f(pa)?(355 +458) + = f(pB)* (355 + 455)) (A-nn+nn-A),
7\ D4 Dp ‘

where S and S, are the equilibrium averages of Legen-
dre’s polynomials of second and fourth order.

V. FLOW ALIGNMENT FOR BINARY MIXTURE

In this section we show the way to determine the com-
mon director n of binary mixture effected by the velocity
gradient field. Our purpose is also to obtain the second
phenomenological equation (12) of the Ericsen-Leslie the-
ory in terms of microscopic quantities of molecules A and
B. Following the idea of Kuzuu and Doi [2] we start from
the kinetic equation (1) for the steady-state orientational
distribution function f(u4,up). In our problem a low
velocity gradient is assumed. Thus, we use the perturba-
tion method and expand f into series: f = fo+ f1+---.
The zeroth-order term f, is the equilibrium solution,
written as f{1f&. The next term, f;, takes the form
fi=f8FE + fEf{, where f{* and fE are the first-order
perturbations of f§! and f&, respectively. Thus, neglect-
ing all higher perturbation terms we have

f=1860 + 118 + iP5 (24)
If we make the right-hand side of (1) equal to zero and
substitute expression (24) for f we obtain the following
system of two equations corresponding to zeroth- and
first-order terms, respectively:
B
DAfBRA(RASS — fERABVS + Dpf3Re)Refo
—-f¢RBAVS® = 0. (25)
DafsGalfis 21+ DafdGalfi, f2] — fERawaf
—feRawafs' =0, (26)
where
Galfit, 18] = Ra(Rafi — f{RABVSY)
—fSRAB(VAA A + VAPfP)),
G 181 = Re(RBfE — FERBAVY)
~fo ReB(VEA] + VEE[£P]),
and 8 = %
Equation (26) has a complicated form. It appears that
we can rewrite it after some calculation as

of; = w, (27)

where f; and w are two-dimensional vectors. Compo-
nents of f; are functions f{! and fE, vector w is defined
as follows:

4 gvm o (%f(pA)ZS’f + %%f(pf,)zsf) (A : nn)nn
) (nN + Nn)

+2 (d_Af(pA)2(7 — 554 —258) + g_if(pB)2(7 ~557 — 25?)) A

(23)

Cpfs $ERpwsfE

WZC(CAf€)+<g—2RAwAf64>,

where C, Cy, and Cp are arbitrary constants. Elements
of the linear matrix functional O are defined as

Only] = CaR(Ry — RBVS* — f5' BV 4P [p)),
O12[¢] = CARfFRBV 4P [g],
Oaz1[p] = CRfy RBV P4 [y,
On[p] = CER(Rp — ¢RBVS® — f BV EA[¢)).
We look for the solution of Eq. (27) in the form of the

infinite series
f1 = E an(ﬁna
n

where ®,, are right-side eigenvectors of the operator O
composed of &2 and ®2:

(’\)Qn = A'nén- (28)
Let us define the left-side eigenvectors ¥} = (¥4, UB):
vt Ot =, . (29)
Of course we can normalize eigenvectors in a such way
that the orthogonality and normalization condition are
fulfilled:
<‘I’In7 ®,) = <\I’:}w©:}> + <‘Ilgu @E> = Omn;
where

(30)

(T4, B4y = / WA (up) @A (ua)d?us,

(U8, 0F) = / 05 (ug) @7 (up)d®up .
We obtain

C C

C C
+ ((’RAwA\II;‘)E‘i + <R3w3wf>D—§> . (31)

Here () denotes the equilibrium average. The equilibrium
distribution function fo(nu4,nupg) is degenerated. This
indicates that for arbitrary rotation of director n by a
small angle ® , which changes n to n’ * n+ n x ©, the
function
fo(n'ua,n’up) = fo(nuy,nup)

——@’R(")fo(nuA, nug) (32)

still satisfies Eq. (25). Thus, using the relations R4 f =



—RMf Rpf=—-—RM™f we have

A ORASS\ _

° ( ORpfE ) e

This means that we have the eigenvalue \¢ = 0 for
®f = ORAf$ and ®F = ORpfE. One remark is
in order: if we leave only the first term in the ex-
pansion of f1, corresponding to the eigenvalue Ao, then
f =1+ O®RM)f,. This means that perturbation re-
moves only the degeneration of the equilibrium solution.
Thus, the expansion (24) represents the function fy ro-
tated by the small angle ®. We are not interested in
properties of the steady-state solution.

We analyze the Fokker-Planck equation (1) for the pur-
pose of coming up with information about the antisym-
metric part of the stress tensor. In fact, our task has
nothing in common with the nonequilibrium problem.

It is obvious that the solvability condition for Eq. (27)

reads
C C
_ A A B B
=C ((\IIO )—-——D + (T )D———B>

C C
+ ((R'AwA\pé)D_j + <RBwB‘I’g>D—2> .

The above relation is an equation that determines the
common director n. For further calculation we have to
know both eigenvectors ¥4 and ¥Z. We find them in
the following way.

Let us define two vectors x and y as follows:

A B 1
-wgud). y= (%),
We have

(xt01,y) = <fo ’f A(f?RA‘I’é)>
0

(33)

+< 0 RB(fc?RB‘I’B)>
fe

+(fg',BVAIRA(f§RAYS), RE(fg REYS)])
+(f3, BVE[RA(f$RATE), RE(fERETE)]).

A
Asz
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One can check that condition x'O = 0 leads to
Ra(f§RATE) = ORLSS, (34)
Re(fERpTE) = ORBSE. (35)

From (34) and (35) we find that functions ¥&(n - ny)
and ¥Z(n-np) in a polar coordinate system have the
following forms:

V& (n-us) = ga(cos©4)O - e‘:,
(36)
‘Ilg(n -up) = gp(cos®p)O® -eg,

where cos®@4 4B = n-uap and eAB is a unit vector
parallel to (1/sin® 4 g) Bua,B/0pa,p and functions gy

and gp are determined by two equations:

1 d <in® dga 94 dVOA dga
Sin@, dO 4 440, )  sin’@, ' dO,dO,
A
— 7
ALY
and
1 d (. dgs 9B dvy® dgp
————— | sin®p e -
sin@p dOpg dOp sin“Opg dOp dOp
dv e
= 3
20, 8
where Vi* and V2 are defined in (21). From (36) we

obtain also that both averages (¥§') and (¥Z) are equal
to zero. Finally Eq. (33) becomes

C C
0= (Rawa¥3) 5= + (Rpws ¥F) =2 (39)
Dy D
By substituting C4 = kT'd4 and Cp = kTd4 and us-

ing relations (37) and (38) we can rewrite [2] the above
equation in the form

ds(gpPdVy®/dOp)

{5

f(pa) +

105 fiom)) kA - - (LLAIL/10) |

2D 4

2Dp ) kTS - n}. (40)}

From (40) one finds that the formula for extinction angle x reads as

_ M _ 1daDp(gaBdVs/d©.4) + dgDa(gsBdVP /dO5)
cos2x 2 2 daS3 f(pa)Dp + dpSP f(p)Da (1)
VI. THE LESLIE COEFFICIENTS
Comparing (23) with (11) and (40) with (12) we obtain
d 2 d 2

e
o =~ (L2 s + Housavit/40.4)/$os)) + “LHLESE + 3 anBavi? 120 5)/ S(po)]) |
as =~ (L2 s — Housavit /40.4)/ s + LHLEVSE — HonBavi? a0 5)/ f(oo)])
ay = ’g (———d“;’:“) (7584 —250) + 4‘13%’;‘*)2 (7—58F — 2Sf)> , (42)
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d
o= 7 [452 (Host vasty st

o= L [10) (100t aspy - s¢) +

2 Dy

dsf(pB) (f(y;s)(3523 +458) + Sf)] :

Dg

Dp

ds f (p5) (f(I;B)(”f“S‘*B) _SZB)]'

In particular, the rotational viscosity coefficient «y; is given by the following formula:

'71=a3——a2=2(dA+dB)(

where 4 and zp denote the molar fractions of compo-
nents. This relation is in agreement with known results
[10], where the rule of averaging the rotational friction
constants has been confirmed experimentally.

It is straightforward to see that formulas (42) obey
the Parodi relation. In the limiting cases, when concen-
trations of components A or B tend to zero, we recover
appropriate Doi formulas for the one-component system
consisting of molecules A or B, respectively.

VII. CONCLUSION

On the basis of the Doi approach we have calculated
the six Leslie viscosity coefficients, «; - - - ag, for binary
mixtures of nematic liquid crystals. Obtained formulas
fully recover the Doi expressions for one-component sys-
tems. Our results, however, are more general because
we do not restrict ourselves to interaction potentials de-
pending on the inner product u; - u,.

A dV.EB /d©
(94BdVy /d93>wA+ {gBBdVy° / B)xB ’
DA DB

(43)

[
Our approach predicts that each of six viscosity coef-

ficients, a;, of the binary mixture is a sum of two Doi
coefficients, aft and a?, characterizing the components
A and B, respectively, weighted by the molar fractions.
On the other hand, appropriate order parameters and ro-
tational diffusion constants, appearing in o and aiB , are
nontrivial functionals depending on the total features of
the considered mixture. This rule of the arithmetic aver-
aging has been confirmed in several experiments for the
rotational viscosity coefficient ;. Therefore, the mean-
field approximation, which we have used in these calcula-
tions, seems to be sufficient to stud the viscous properties
of mixtures.
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